3.4.81 \(\int x^5 (d+e x) (a+b x^2)^p \, dx\) [381]

3.4.81.1 Optimal result
3.4.81.2 Mathematica [A] (verified)
3.4.81.3 Rubi [A] (verified)
3.4.81.4 Maple [F]
3.4.81.5 Fricas [F]
3.4.81.6 Sympy [B] (verification not implemented)
3.4.81.7 Maxima [F]
3.4.81.8 Giac [F]
3.4.81.9 Mupad [F(-1)]

3.4.81.1 Optimal result

Integrand size = 18, antiderivative size = 125 \[ \int x^5 (d+e x) \left (a+b x^2\right )^p \, dx=\frac {a^2 d \left (a+b x^2\right )^{1+p}}{2 b^3 (1+p)}-\frac {a d \left (a+b x^2\right )^{2+p}}{b^3 (2+p)}+\frac {d \left (a+b x^2\right )^{3+p}}{2 b^3 (3+p)}+\frac {1}{7} e x^7 \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {7}{2},-p,\frac {9}{2},-\frac {b x^2}{a}\right ) \]

output
1/2*a^2*d*(b*x^2+a)^(p+1)/b^3/(p+1)-a*d*(b*x^2+a)^(2+p)/b^3/(2+p)+1/2*d*(b 
*x^2+a)^(3+p)/b^3/(3+p)+1/7*e*x^7*(b*x^2+a)^p*hypergeom([7/2, -p],[9/2],-b 
*x^2/a)/((1+b*x^2/a)^p)
 
3.4.81.2 Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.90 \[ \int x^5 (d+e x) \left (a+b x^2\right )^p \, dx=\frac {1}{14} \left (a+b x^2\right )^p \left (\frac {7 d \left (a+b x^2\right ) \left (2 a^2-2 a b (1+p) x^2+b^2 \left (2+3 p+p^2\right ) x^4\right )}{b^3 (1+p) (2+p) (3+p)}+2 e x^7 \left (1+\frac {b x^2}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {7}{2},-p,\frac {9}{2},-\frac {b x^2}{a}\right )\right ) \]

input
Integrate[x^5*(d + e*x)*(a + b*x^2)^p,x]
 
output
((a + b*x^2)^p*((7*d*(a + b*x^2)*(2*a^2 - 2*a*b*(1 + p)*x^2 + b^2*(2 + 3*p 
 + p^2)*x^4))/(b^3*(1 + p)*(2 + p)*(3 + p)) + (2*e*x^7*Hypergeometric2F1[7 
/2, -p, 9/2, -((b*x^2)/a)])/(1 + (b*x^2)/a)^p))/14
 
3.4.81.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.98, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {542, 243, 53, 279, 278, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^5 (d+e x) \left (a+b x^2\right )^p \, dx\)

\(\Big \downarrow \) 542

\(\displaystyle d \int x^5 \left (b x^2+a\right )^pdx+e \int x^6 \left (b x^2+a\right )^pdx\)

\(\Big \downarrow \) 243

\(\displaystyle \frac {1}{2} d \int x^4 \left (b x^2+a\right )^pdx^2+e \int x^6 \left (b x^2+a\right )^pdx\)

\(\Big \downarrow \) 53

\(\displaystyle \frac {1}{2} d \int \left (\frac {a^2 \left (b x^2+a\right )^p}{b^2}-\frac {2 a \left (b x^2+a\right )^{p+1}}{b^2}+\frac {\left (b x^2+a\right )^{p+2}}{b^2}\right )dx^2+e \int x^6 \left (b x^2+a\right )^pdx\)

\(\Big \downarrow \) 279

\(\displaystyle \frac {1}{2} d \int \left (\frac {a^2 \left (b x^2+a\right )^p}{b^2}-\frac {2 a \left (b x^2+a\right )^{p+1}}{b^2}+\frac {\left (b x^2+a\right )^{p+2}}{b^2}\right )dx^2+e \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \int x^6 \left (\frac {b x^2}{a}+1\right )^pdx\)

\(\Big \downarrow \) 278

\(\displaystyle \frac {1}{2} d \int \left (\frac {a^2 \left (b x^2+a\right )^p}{b^2}-\frac {2 a \left (b x^2+a\right )^{p+1}}{b^2}+\frac {\left (b x^2+a\right )^{p+2}}{b^2}\right )dx^2+\frac {1}{7} e x^7 \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {7}{2},-p,\frac {9}{2},-\frac {b x^2}{a}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} d \left (\frac {a^2 \left (a+b x^2\right )^{p+1}}{b^3 (p+1)}-\frac {2 a \left (a+b x^2\right )^{p+2}}{b^3 (p+2)}+\frac {\left (a+b x^2\right )^{p+3}}{b^3 (p+3)}\right )+\frac {1}{7} e x^7 \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {7}{2},-p,\frac {9}{2},-\frac {b x^2}{a}\right )\)

input
Int[x^5*(d + e*x)*(a + b*x^2)^p,x]
 
output
(d*((a^2*(a + b*x^2)^(1 + p))/(b^3*(1 + p)) - (2*a*(a + b*x^2)^(2 + p))/(b 
^3*(2 + p)) + (a + b*x^2)^(3 + p)/(b^3*(3 + p))))/2 + (e*x^7*(a + b*x^2)^p 
*Hypergeometric2F1[7/2, -p, 9/2, -((b*x^2)/a)])/(7*(1 + (b*x^2)/a)^p)
 

3.4.81.3.1 Defintions of rubi rules used

rule 53
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, 
x] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0] && LeQ[7*m + 4*n + 4, 0]) 
|| LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 279
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^IntP 
art[p]*((a + b*x^2)^FracPart[p]/(1 + b*(x^2/a))^FracPart[p])   Int[(c*x)^m* 
(1 + b*(x^2/a))^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && 
!(ILtQ[p, 0] || GtQ[a, 0])
 

rule 542
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> 
 Simp[c   Int[x^m*(a + b*x^2)^p, x], x] + Simp[d   Int[x^(m + 1)*(a + b*x^2 
)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && IntegerQ[m] &&  !IntegerQ[2*p]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.4.81.4 Maple [F]

\[\int x^{5} \left (e x +d \right ) \left (b \,x^{2}+a \right )^{p}d x\]

input
int(x^5*(e*x+d)*(b*x^2+a)^p,x)
 
output
int(x^5*(e*x+d)*(b*x^2+a)^p,x)
 
3.4.81.5 Fricas [F]

\[ \int x^5 (d+e x) \left (a+b x^2\right )^p \, dx=\int { {\left (e x + d\right )} {\left (b x^{2} + a\right )}^{p} x^{5} \,d x } \]

input
integrate(x^5*(e*x+d)*(b*x^2+a)^p,x, algorithm="fricas")
 
output
integral((e*x^6 + d*x^5)*(b*x^2 + a)^p, x)
 
3.4.81.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 921 vs. \(2 (104) = 208\).

Time = 12.80 (sec) , antiderivative size = 950, normalized size of antiderivative = 7.60 \[ \int x^5 (d+e x) \left (a+b x^2\right )^p \, dx=\frac {a^{p} e x^{7} {{}_{2}F_{1}\left (\begin {matrix} \frac {7}{2}, - p \\ \frac {9}{2} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{7} + d \left (\begin {cases} \frac {a^{p} x^{6}}{6} & \text {for}\: b = 0 \\\frac {2 a^{2} \log {\left (x - \sqrt {- \frac {a}{b}} \right )}}{4 a^{2} b^{3} + 8 a b^{4} x^{2} + 4 b^{5} x^{4}} + \frac {2 a^{2} \log {\left (x + \sqrt {- \frac {a}{b}} \right )}}{4 a^{2} b^{3} + 8 a b^{4} x^{2} + 4 b^{5} x^{4}} + \frac {3 a^{2}}{4 a^{2} b^{3} + 8 a b^{4} x^{2} + 4 b^{5} x^{4}} + \frac {4 a b x^{2} \log {\left (x - \sqrt {- \frac {a}{b}} \right )}}{4 a^{2} b^{3} + 8 a b^{4} x^{2} + 4 b^{5} x^{4}} + \frac {4 a b x^{2} \log {\left (x + \sqrt {- \frac {a}{b}} \right )}}{4 a^{2} b^{3} + 8 a b^{4} x^{2} + 4 b^{5} x^{4}} + \frac {4 a b x^{2}}{4 a^{2} b^{3} + 8 a b^{4} x^{2} + 4 b^{5} x^{4}} + \frac {2 b^{2} x^{4} \log {\left (x - \sqrt {- \frac {a}{b}} \right )}}{4 a^{2} b^{3} + 8 a b^{4} x^{2} + 4 b^{5} x^{4}} + \frac {2 b^{2} x^{4} \log {\left (x + \sqrt {- \frac {a}{b}} \right )}}{4 a^{2} b^{3} + 8 a b^{4} x^{2} + 4 b^{5} x^{4}} & \text {for}\: p = -3 \\- \frac {2 a^{2} \log {\left (x - \sqrt {- \frac {a}{b}} \right )}}{2 a b^{3} + 2 b^{4} x^{2}} - \frac {2 a^{2} \log {\left (x + \sqrt {- \frac {a}{b}} \right )}}{2 a b^{3} + 2 b^{4} x^{2}} - \frac {2 a^{2}}{2 a b^{3} + 2 b^{4} x^{2}} - \frac {2 a b x^{2} \log {\left (x - \sqrt {- \frac {a}{b}} \right )}}{2 a b^{3} + 2 b^{4} x^{2}} - \frac {2 a b x^{2} \log {\left (x + \sqrt {- \frac {a}{b}} \right )}}{2 a b^{3} + 2 b^{4} x^{2}} + \frac {b^{2} x^{4}}{2 a b^{3} + 2 b^{4} x^{2}} & \text {for}\: p = -2 \\\frac {a^{2} \log {\left (x - \sqrt {- \frac {a}{b}} \right )}}{2 b^{3}} + \frac {a^{2} \log {\left (x + \sqrt {- \frac {a}{b}} \right )}}{2 b^{3}} - \frac {a x^{2}}{2 b^{2}} + \frac {x^{4}}{4 b} & \text {for}\: p = -1 \\\frac {2 a^{3} \left (a + b x^{2}\right )^{p}}{2 b^{3} p^{3} + 12 b^{3} p^{2} + 22 b^{3} p + 12 b^{3}} - \frac {2 a^{2} b p x^{2} \left (a + b x^{2}\right )^{p}}{2 b^{3} p^{3} + 12 b^{3} p^{2} + 22 b^{3} p + 12 b^{3}} + \frac {a b^{2} p^{2} x^{4} \left (a + b x^{2}\right )^{p}}{2 b^{3} p^{3} + 12 b^{3} p^{2} + 22 b^{3} p + 12 b^{3}} + \frac {a b^{2} p x^{4} \left (a + b x^{2}\right )^{p}}{2 b^{3} p^{3} + 12 b^{3} p^{2} + 22 b^{3} p + 12 b^{3}} + \frac {b^{3} p^{2} x^{6} \left (a + b x^{2}\right )^{p}}{2 b^{3} p^{3} + 12 b^{3} p^{2} + 22 b^{3} p + 12 b^{3}} + \frac {3 b^{3} p x^{6} \left (a + b x^{2}\right )^{p}}{2 b^{3} p^{3} + 12 b^{3} p^{2} + 22 b^{3} p + 12 b^{3}} + \frac {2 b^{3} x^{6} \left (a + b x^{2}\right )^{p}}{2 b^{3} p^{3} + 12 b^{3} p^{2} + 22 b^{3} p + 12 b^{3}} & \text {otherwise} \end {cases}\right ) \]

input
integrate(x**5*(e*x+d)*(b*x**2+a)**p,x)
 
output
a**p*e*x**7*hyper((7/2, -p), (9/2,), b*x**2*exp_polar(I*pi)/a)/7 + d*Piece 
wise((a**p*x**6/6, Eq(b, 0)), (2*a**2*log(x - sqrt(-a/b))/(4*a**2*b**3 + 8 
*a*b**4*x**2 + 4*b**5*x**4) + 2*a**2*log(x + sqrt(-a/b))/(4*a**2*b**3 + 8* 
a*b**4*x**2 + 4*b**5*x**4) + 3*a**2/(4*a**2*b**3 + 8*a*b**4*x**2 + 4*b**5* 
x**4) + 4*a*b*x**2*log(x - sqrt(-a/b))/(4*a**2*b**3 + 8*a*b**4*x**2 + 4*b* 
*5*x**4) + 4*a*b*x**2*log(x + sqrt(-a/b))/(4*a**2*b**3 + 8*a*b**4*x**2 + 4 
*b**5*x**4) + 4*a*b*x**2/(4*a**2*b**3 + 8*a*b**4*x**2 + 4*b**5*x**4) + 2*b 
**2*x**4*log(x - sqrt(-a/b))/(4*a**2*b**3 + 8*a*b**4*x**2 + 4*b**5*x**4) + 
 2*b**2*x**4*log(x + sqrt(-a/b))/(4*a**2*b**3 + 8*a*b**4*x**2 + 4*b**5*x** 
4), Eq(p, -3)), (-2*a**2*log(x - sqrt(-a/b))/(2*a*b**3 + 2*b**4*x**2) - 2* 
a**2*log(x + sqrt(-a/b))/(2*a*b**3 + 2*b**4*x**2) - 2*a**2/(2*a*b**3 + 2*b 
**4*x**2) - 2*a*b*x**2*log(x - sqrt(-a/b))/(2*a*b**3 + 2*b**4*x**2) - 2*a* 
b*x**2*log(x + sqrt(-a/b))/(2*a*b**3 + 2*b**4*x**2) + b**2*x**4/(2*a*b**3 
+ 2*b**4*x**2), Eq(p, -2)), (a**2*log(x - sqrt(-a/b))/(2*b**3) + a**2*log( 
x + sqrt(-a/b))/(2*b**3) - a*x**2/(2*b**2) + x**4/(4*b), Eq(p, -1)), (2*a* 
*3*(a + b*x**2)**p/(2*b**3*p**3 + 12*b**3*p**2 + 22*b**3*p + 12*b**3) - 2* 
a**2*b*p*x**2*(a + b*x**2)**p/(2*b**3*p**3 + 12*b**3*p**2 + 22*b**3*p + 12 
*b**3) + a*b**2*p**2*x**4*(a + b*x**2)**p/(2*b**3*p**3 + 12*b**3*p**2 + 22 
*b**3*p + 12*b**3) + a*b**2*p*x**4*(a + b*x**2)**p/(2*b**3*p**3 + 12*b**3* 
p**2 + 22*b**3*p + 12*b**3) + b**3*p**2*x**6*(a + b*x**2)**p/(2*b**3*p*...
 
3.4.81.7 Maxima [F]

\[ \int x^5 (d+e x) \left (a+b x^2\right )^p \, dx=\int { {\left (e x + d\right )} {\left (b x^{2} + a\right )}^{p} x^{5} \,d x } \]

input
integrate(x^5*(e*x+d)*(b*x^2+a)^p,x, algorithm="maxima")
 
output
e*integrate((b*x^2 + a)^p*x^6, x) + 1/2*((p^2 + 3*p + 2)*b^3*x^6 + (p^2 + 
p)*a*b^2*x^4 - 2*a^2*b*p*x^2 + 2*a^3)*(b*x^2 + a)^p*d/((p^3 + 6*p^2 + 11*p 
 + 6)*b^3)
 
3.4.81.8 Giac [F]

\[ \int x^5 (d+e x) \left (a+b x^2\right )^p \, dx=\int { {\left (e x + d\right )} {\left (b x^{2} + a\right )}^{p} x^{5} \,d x } \]

input
integrate(x^5*(e*x+d)*(b*x^2+a)^p,x, algorithm="giac")
 
output
integrate((e*x + d)*(b*x^2 + a)^p*x^5, x)
 
3.4.81.9 Mupad [F(-1)]

Timed out. \[ \int x^5 (d+e x) \left (a+b x^2\right )^p \, dx=\int x^5\,{\left (b\,x^2+a\right )}^p\,\left (d+e\,x\right ) \,d x \]

input
int(x^5*(a + b*x^2)^p*(d + e*x),x)
 
output
int(x^5*(a + b*x^2)^p*(d + e*x), x)